CONGRUENCE THEOREMS FOR RIEMANNIAN SUBMANIFOLDS

BY

ARTHUR J. LEDGER

Departmen~ of Pure Mathemafics University of Liverpool, P.O. Box 147, Liverpool L69 3BX, England

ABSTRACT

The aim of this paper is, essentially, to give sufficient conditions in terms of mean curvature for two submanifolds of a given Riemannian manifold to be congruent modulo a given 1-parameter group of transformations. The results obtained generalise those of several authors including M. Okumura and the present author [11].

1. Introduction

We first recall some results which relate to the following general problem. Let (M, g) be a smooth Riemannian manifold of dimension $r+1$, let $\phi : \mathbb{R} \times M \to M$ be a 1-parameter group of transformations of M generated by a vector field ξ , and let W, \bar{W} be smooth, compact, oriented r-dimensional connected hypersurfaces in M such that the points of \bar{W} are given by the formula $\phi(f(q), q), q \in W$, where $f: W \to \mathbb{R}$ is a given smooth function. For each $q \in W$ define a hypersurface W_q by the condition that the map $\phi_{f(q)} : W \to W_q; x \to \phi(f(q), x)$ should be a diffeomorphism. Also for each $q \in W$ write $\bar{q} = \phi(f(q), q)$ and define

$$
\tilde{H}(\bar{q}) =
$$
 mean curvature of \tilde{W} at \bar{q} ,

$$
H(\bar{q}) =
$$
 mean curvature of W_q at \bar{q} ,

where the above maps are assumed to preserve orientation. Then one may ask: Under what further conditions does the equality $\bar{H}(\bar{q}) = H(\bar{q})$ for all $q \in W$ imply that W and \bar{W} are congruent modulo ϕ , that is $\bar{W} = \phi_c(W)$ for some $c \in \mathbb{R}$?

Received May 10, 1992 and in revised form November 12, 1992

Two cases of particular interest arise as follows: Suppose W and \bar{W} are surfaces in Euclidean space E^3 and $\theta : W \to \bar{W}$ is a smooth map preserving orientation. Also, suppose the set of points $p \in W$ where the lines $[p, \bar{p}], \bar{p} = \theta(p)$, are tangent to W does not have inner points. Then the following two theorems apply.

THEOREM 1.1: (H. Hopf and K. Voss [9], K. Voss [12], P. Hartman [4]) If all the lines $[p, \bar{p}]$ are parallel and θ preserves the mean curvature of W and \bar{W} (that is $H(p) = \bar{H}(\bar{p})$, then \bar{W} is obtained from W by a translation of E^3 .

THEOREM 1.2: (A. Aeppli ([1]) If all the lines $[p, \bar{p}]$ pass through a fixed point 0 and if $r\tilde{H}(p) = r\tilde{H}(\bar{p})$, where r and \bar{r} are the distances from 0 to p and \bar{p} *respectively, and* $\tilde{H}(p)$ *is the mean curvature of W at p, then* \bar{W} *is obtained from W* by a homothety, thus the ratio \vec{r}/r is constant.

In the above two theorems ϕ is a 1-parameter group of translations or homotheties.

Next, with the notation of the first paragraph, let S be the set of singular points of \bar{W} , that is the set of points on which the vector field ξ is tangential to \bar{W} . Then the following three theorems are known:

THEOREM 1.3: (Y. Katsurada [10]) If $\bar{H}(\bar{q}) = H(\bar{q})$ for all $q \in W$, and ϕ is a *1-parameter* group of *homothetic transformations* for *which S is nowhere* dense in \bar{W} , then W and \bar{W} are congruent modulo ϕ .

THEOREM 1.4: (H. Hopf and Y. Katsurada [8]) If $\bar{H}(\bar{q}) = H(\bar{q})$ for all $q \in W$ and the set S is empty, then W and \bar{W} are congruent modulo ϕ .

The method of proof of Theorem 1.4 is to show that f satisfies an elliptic partial differential equation on W and then to apply the well-known maximum principle of E. Hopf [7]. By modifying the maximum principle, using a special case of a theorem due to P. Hartman and R. Sacksteder [5], H. Brühlmann has generalised Theorem 1.4 as follows:

THEOREM 1.5: (H. Brühlmann [3]) Define $G : \bar{W} \to \mathbb{R}$ by $G = g(\bar{N}, \xi)$ where \bar{N} is the unit normal vector field over \bar{W} . If grad $G \neq 0$ whenever $G = 0$ on \bar{W} , and $\bar{H}(\bar{p}) = H(\bar{p})$ for all $p \in W$, then the hypersurfaces W and \bar{W} are congruent $modulo \phi$.

Our main purpose here is to generalise Theorem 1.4 in the following ways. Firstly, we remove the conditions of orientability, then we replace the compactness conditions on W and W by the condition that f should attain a maximum value on W ; next, we allow W to have arbitrary codimension and remove the assumption that \bar{W} is a submanifold of M; finally we replace the global condition that $\bar{H} = H$ by a local condition on mean curvature vector fields. Indeed, our proof is essentially a local one and does not require the method of variation of mean curvature found in [8]. We then obtain a similar generalisation of Brühlmann's theorem by considering the above conditions in greater detail.

2. Extension of the Hopf-Katsurada theorem

The following notation and assumptions will apply from hereon. Let (M, q) be a smooth Riemannian manifold of dimension $r + n$, let $\phi : \mathbb{R} \times M \to M$ be a 1-parameter group of transformations of M generated by a vector field ξ , and let W be a smooth connected r-dimensional submanifold of M. For each $t \in \mathbb{R}$ define the map $\phi_t: W \to M$ by $\phi_t(x) = \phi(t, x)$. We consider a given smooth function $f: W \to \mathbb{R}$ and write $\bar{W} = \psi(W)$ where the map $\psi: W \to M$ is defined **by**

$$
\psi(q) = \phi(f(q), q) \quad \text{for all } q \in W.
$$

As before we write $\psi(q)$ as \bar{q} . However, we remark that \bar{W} is not assumed to have a submanifold structure. Now assume f attains a maximum value, say c , on W. If $f(p) = c$ then $df = 0$ at p so $d\psi = d\phi_c$ at p where $d\psi$ and $d\phi_c$ denote the differentials of ψ and ϕ_c acting on $T_p(W)$, the tangent space to W at p. It follows that ψ is an immersion of some neighbourhood of p in W into M. Hence there exists a neighbourhood V of p in W and an embedded submanifold \bar{V} of M such that $\bar{V} = \Psi(V)$ and the map $V \to \bar{V}$; $x \mapsto \Psi(x)$ is a diffeomorphism. Similarly, for each $q \in V$ define a submanifold $V_{\bar{q}}$ of M such that $V_{\bar{q}} = \phi_{f(q)}(V)$ and the map $V \to V_{\bar{q}}$; $x \mapsto \phi_{f(q)}(x) = \phi(f(q), x)$ is a diffeomorphism. We note that $\bar{q} \in V_{\bar{q}}$ for each $\bar{q} \in \bar{V}$, also the tangent spaces $T_{\bar{q}}(\bar{V})$ and $T_{\bar{p}}(V_{\bar{p}})$ agree. Then we define vector fields \bar{H} and H along \bar{V} by writing $\bar{H}(\bar{q})$ and $H(\bar{q})$ for the mean curvature vectors of \bar{V} and $V_{\bar{q}}$ at \bar{q} for each $\bar{q} \in \bar{V}$. Also, we define a smooth function $F: \bar{V} \to \mathbb{R}$ by $f|V = F \circ \psi$. Finally, define an equivalence relation \sim on $C^{\infty}(\bar{V})$ by writing $F_1 \sim F_2$ if $F_1 - F_2 = X(F)$ for some smooth vector field X tangential to \bar{V} . We now prove the following theorem.

THEOREM 2.1: With the above notation, suppose f attains on W a maximum *value, say c.* For each maximum point p of f choose V and \overline{V} as above and suppose there exists a smooth unit normal vector field \bar{N} on \bar{V} such that

(i) $q(H, \bar{N}) \sim q(\bar{H}, \bar{N})$

and

(ii) $g(\bar{N}, \xi) \neq 0$ at \bar{p} .

Then \bar{W} is a submanifold of M and W, \bar{W} are congruent modulo ϕ .

Proof: We use the above notation relating to a maximum p of f. In particular we choose V and $\bar{V} = \psi(V)$ as above and remark that any further restrictions of V or \bar{V} are understood to be applied simultaneously so as to preserve the relation $\psi(V) = \overline{V}$. Now restrict V so as to obtain a chart^{*} $V{v^{\alpha}}$ at p on W, then a chart $\bar{V}\{\bar{v}^{\alpha}\}\$ is defined by the relation $v^{\alpha} = \bar{v}^{\alpha} \circ \phi$. By restricting \bar{V} we may assume a chart $U\{x^i\}$ is defined at \bar{p} on M such that $\bar{V} \subset U$. We write g_{ij} and g^{ij} for the covariant and contravariant components of the metric tensor field g on $U{x^i}$ and $\bar{h}_{\alpha\beta}$ and $\bar{h}^{\alpha\beta}$ for the covariant and contravariant components of the induced metric tensor field \bar{h} on $\bar{V}\{\bar{v}^{\alpha}\}$. Next, we note that since f and ϕ are continuous, V can be restricted so that $\phi_{f(q)}(V) \subset U$ for all $q \in V$. Then for each $\bar{q} \in \bar{V}$ a chart $V_{\bar{q}}\{v_{\bar{q}}^{\alpha}\}\$ is defined on the submanifold $V_{\bar{q}}$ by the relation

$$
(1) \t v^{\alpha} = v^{\alpha}_{\bar{q}} \circ \phi_{f(q)}.
$$

In order to consider the vector fields \bar{H} and H described above, we first use the relation $v^{\alpha} = v^{-\alpha} \circ \psi$ to obtain

$$
\frac{\partial x^i}{\partial \bar{v}^\alpha} \circ \psi = \frac{\partial (x^i \circ \psi)}{\partial v^\alpha} \n= \frac{\partial (x^i \circ \psi)}{\partial v^\alpha} + \frac{\partial (x^i \circ \psi)}{\partial t} \frac{\partial f}{\partial v^\alpha}
$$

and

$$
\frac{\partial^2 x^i}{\partial \bar{v}^\alpha \partial \bar{v}^\beta} \circ \psi = \frac{\partial^2 (x^i \circ \psi)}{\partial v^\alpha \partial v^\beta}
$$
\n
$$
= \frac{\partial^2 (x^i \circ \phi)}{\partial v^\alpha \partial v^\beta} + \frac{\partial^2 (x^i \circ \phi)}{\partial v^\alpha \partial t} \frac{\partial f}{\partial v^\beta} + \frac{\partial^2 (x^i \circ \phi)}{\partial v^\beta \partial t} \frac{\partial f}{\partial v^\alpha}
$$
\n
$$
+ \frac{\partial^2 (x^i \circ \phi)}{\partial t^2} \frac{\partial f}{\partial v^\alpha} \frac{\partial f}{\partial v^\beta} + \frac{\partial (x^i \circ \phi)}{\partial t} \frac{\partial^2 f}{\partial v^\alpha \partial v^\beta},
$$

the right hand sides being evaluated where $t = f(q)$ for each $q \in V$. For the corresponding equations on \bar{V} we use the function F and the vector field ξ , as defined above, to obtain

(2)
$$
\frac{\partial x^i}{\partial \bar{v}^\alpha} = \frac{\partial (x^i \circ \phi)}{\partial v^\alpha} \circ \psi^{-1} + \xi^i \frac{\partial F}{\partial \bar{v}^\alpha}
$$

^{*} Greek suffixes indicate the range $1, \ldots, r$ and Roman suffixes indicate the range $1, \ldots, r + n$. A repeated suffix indicates summation.

$$
\quad \text{and} \quad
$$

(3)
$$
\frac{\alpha^2 x^i}{\partial \bar{v}^\alpha \partial \bar{v}^\beta} = \frac{\partial^2 (x^i \circ \phi)}{\partial v^\alpha \partial v^\beta} \circ \psi^{-1} + \frac{\partial \xi^i}{\partial x^j} \left[\frac{\partial x^j}{\partial \bar{v}^\alpha} \frac{\partial F}{\partial \bar{v}^\beta} + \frac{\partial x^j}{\partial \bar{v}^\beta} \frac{\partial F}{\partial \bar{v}^\alpha} \right] - \frac{\partial \xi^i}{\partial x^j} \xi^j \frac{\partial F}{\partial \bar{v}^\alpha} \frac{\partial F}{\partial \bar{v}^\beta} + \xi^i \frac{\partial^2 F}{\partial \bar{v}^\alpha \partial \bar{v}^\beta}
$$

at all points of \bar{V} , where $\xi = \xi^{i}\partial/\partial x^{i}$ on U.

We note from (1) that if each x^i is restricted to $V_{\bar{g}}$ then

(4)
$$
\begin{cases} \frac{\partial x^{i}}{\partial v_{\tilde{q}}^{\tilde{\sigma}}}(\bar{q}) = \frac{\partial (x^{i} \circ \phi)}{\partial v^{\alpha}}(\psi^{-1}(\bar{q})), \\ \frac{\partial^{2} x^{i}}{\partial v_{\tilde{q}}^{\tilde{\sigma}}}(\bar{q}) = \frac{\partial^{2} (x^{i} \circ \phi)}{\partial v^{\alpha} \partial v^{\beta}}(\psi^{-1}(\bar{q})). \end{cases}
$$

Now for each $\bar{q} \in \bar{V}$ the natural components $h_{\alpha\beta}(\bar{q})$ of the induced metric on $V_{\bar{q}}$ at \bar{q} are given by

$$
h_{\alpha\beta}=g_{ij}\frac{\partial x^i}{\partial v^{\alpha}_{\bar{q}}}\frac{\partial x^j}{\partial v^{\beta}_{\bar{q}}}.
$$

Hence, from (2) and (4), the functions $h_{\alpha\beta}$ on \bar{V} are given by

(5)

$$
h_{\alpha\beta} = g_{ij} \left[\frac{\partial x^i}{\partial \bar{v}^\alpha} - \xi^i \frac{\partial F}{\partial \bar{v}^\alpha} \right] \left[\frac{\partial x^j}{\partial \bar{v}^\beta} - \xi^j \frac{\partial F}{\partial \bar{v}^\beta} \right]
$$

$$
= \bar{h}_{\alpha\beta} + g(\xi, \xi) \frac{\partial F}{\partial \bar{v}^\alpha} \frac{\partial F}{\partial \bar{v}^\beta} - g(e_\alpha, \xi) \frac{\partial F}{\partial \bar{v}^\beta} - g(e_\beta, \xi) \frac{\partial F}{\partial \bar{v}^\alpha}
$$

where, from hereon, we write e_{α} for the vector field $(\partial x^{i}/\partial \bar{v}^{\alpha})\partial/\partial x^{i}$ defined on \bar{V} . Then from (5).

$$
\bar{h}^{\gamma\delta} - h^{\gamma\delta} = (h_{\alpha\beta} - \bar{h}_{\alpha\beta})h^{\alpha\gamma}\bar{h}^{\beta\delta}
$$

$$
= \left[g(\xi, \xi) \frac{\partial F}{\partial \bar{v}^{\alpha}} \delta^{\epsilon}_{\beta} - g(e_{\alpha}, \xi) \delta^{\epsilon}_{\beta} - g(e_{\beta}, \xi) \delta^{\epsilon}_{\alpha} \right] h^{\alpha\gamma}\bar{h}^{\beta\delta} \frac{\partial F}{\partial \bar{v}^{\epsilon}}
$$

where $(h^{\gamma\delta})$ denotes the inverse of the matrix $(h_{\gamma\delta})$. It follows that, under the above definition of equivalence,

$$
\bar{h}^{\alpha\beta} \sim h^{\alpha\beta}
$$

for all α , β .

We now use the vector field \bar{N} , as given in the theorem, and the mean curvature vector field \bar{H} to obtain

$$
g(\bar{H},\ \bar{N})=g_{ij}\bar{h}^{\alpha\beta}\bar{N}^i\left[\frac{\partial^2 x^j}{\partial \bar{v}^{\alpha}\partial \bar{v}^{\beta}}+\Gamma^j_{kl}\frac{\partial x^k}{\partial \bar{v}^{\alpha}}\frac{\partial x^{\ell}}{\partial \bar{v}^{\beta}}\right]
$$

where

$$
\bar{N} = \bar{N}^i \frac{\partial}{\partial x^i} \quad \text{on } \bar{V} \quad \text{and} \quad \Gamma^j_{kl} \frac{\partial}{\partial x^j} = \frac{\Delta_{\partial}}{\partial x^k} \frac{\partial}{\partial x^l} \quad \text{on } U.
$$

Next we consider $g(H,~\bar{N})$ and first define a vector field N on \bar{V} by the condition that, for each $\bar{q} \in \bar{V}$, $N_{\bar{q}}$ is on the component of $\bar{N}_{\bar{q}}$ tangential to $V_{\bar{q}}$. Clearly, from (2) and (4)

(8)
$$
N = N^i \frac{\partial}{\partial x^i} = a^\alpha \left[\frac{\partial x^i}{\partial \bar{v}^\alpha} - \xi^i \frac{\partial F}{\partial \bar{v}^\alpha} \right] \frac{\partial}{\partial x^i} = a^\alpha \left[e_\alpha - \xi \frac{\partial F}{\partial \bar{v}^\alpha} \right]
$$

for some functions a^{α} on \bar{V} such that

$$
g\left[\bar{N}-a^{\alpha}\left[e_{\alpha}-\xi\frac{\partial F}{\partial\bar{v}^{\alpha}}\right], e_{\beta}-\xi\frac{\partial F}{\partial\bar{v}^{\beta}}\right]=0,
$$

thus

(9)

$$
\int_{\alpha}^{\alpha} a \left[h_{\alpha\beta} - g(e_{\alpha}, \xi) \frac{\partial F}{\partial \bar{v}^{\beta}} - g(e_{\beta}, \xi) \frac{\partial F}{\partial \bar{v}^{\alpha}} + g(\xi, \xi) \frac{\partial F}{\partial \bar{v}^{\alpha}} \frac{\partial F}{\partial \bar{v}^{\beta}} \right] = -g(\bar{N}, \xi) \frac{\partial F}{\partial \bar{v}^{\beta}}.
$$

Since $\partial F/\partial \bar{v}^{\alpha} = 0$ at \bar{p} and $(h_{\alpha\beta})$ is non-singular, it follows from (9) that \bar{V} can be restricted so that $a^{\alpha} \sim 0$ on \bar{V} . Hence $N^i \sim 0$ on \bar{V} . Also, from (2), (3) and (4), at each $\bar{q} \in \bar{V}$,

(10)

$$
g(H, \ \bar{N}) = g(H, \ \bar{N} - N)
$$

\n
$$
= g_{ij}h^{\alpha\beta}(\bar{N}^{i} - N^{i}) \left[\frac{\partial^{2}x^{j}}{\partial v_{q}^{\alpha}\partial v_{q}^{\beta}} + \Gamma^{j}_{k\ell} \frac{\partial x^{k}}{\partial v_{q}^{\alpha}} \frac{\partial x^{l}}{\partial v_{q}^{\beta}} \right]
$$

\n
$$
= g_{ij}h^{\alpha\beta}(\bar{N}^{i} - N^{i}) \left[\frac{\partial^{2}x^{j}}{\partial \bar{v}^{\alpha}\partial \bar{v}^{\beta}} - 2 \frac{\partial \xi^{j}}{\partial x^{k}} \frac{\partial x^{k}}{\partial \bar{v}^{\alpha}} \frac{\partial F}{\partial \bar{v}^{\beta}} + \xi^{k} \frac{\partial \xi^{j}}{\partial x^{k}} \frac{\partial F}{\partial \bar{v}^{\alpha}} \frac{\partial F}{\partial \bar{v}^{\beta}} \right]
$$

\n
$$
- \xi^{j} \frac{\partial^{2}F}{\partial \bar{v}^{\alpha}\partial \bar{v}^{\beta}} + \Gamma^{j}_{k\ell} \left[\frac{\partial x^{k}}{\partial \bar{v}^{\alpha}} - \xi^{k} \frac{\partial F}{\partial \bar{v}^{\alpha}} \right] \left[\frac{\partial x^{l}}{\partial \bar{v}^{\beta}} - \xi^{l} \frac{\partial F}{\partial \bar{v}^{\beta}} \right].
$$

Since $N^i \sim 0$ and $h^{\alpha\beta} \sim \bar{h}^{\alpha\beta}$, it follows that

$$
g(H, \bar{N}) \sim g_{ij} \bar{h}^{\alpha \beta} \bar{N}^{i} \left[\frac{\partial^{2} x^{j}}{\partial \bar{v}^{\alpha} \partial \bar{v}^{\beta}} - 2 \frac{\partial \xi^{j}}{\partial x^{k}} \frac{\partial x^{k}}{\partial \bar{v}^{\alpha}} \frac{\partial F}{\partial \bar{v}^{\beta}} + \xi^{k} \frac{\partial \xi^{j}}{\partial x^{k}} \frac{\partial F}{\partial \bar{v}^{\alpha}} \frac{\partial F}{\partial \bar{v}^{\beta}} - \xi^{j} \frac{\partial \xi^{j}}{\partial \bar{v}^{\beta}} \frac{\partial F}{\partial \bar{v}^{\beta}} \right]
$$
\n
$$
(11) \qquad \qquad - \xi^{j} \frac{\partial^{2} F}{\partial \bar{v}^{\alpha} \partial \bar{v}^{\beta}} + \Gamma^{j}_{kl} \left[\frac{\partial x^{k}}{\partial \bar{v}^{\alpha}} - \xi^{k} \frac{\partial F}{\partial \bar{v}^{\alpha}} \right] \left[\frac{\partial x^{l}}{\partial \bar{v}^{\beta}} - \xi^{l} \frac{\partial F}{\partial \bar{v}^{\beta}} \right]
$$
\n
$$
\sim g(\bar{H}, \bar{N}) - g(\bar{N}, \xi) h^{\alpha \beta} \frac{\partial^{2} F}{\partial \bar{v}^{\alpha} \alpha \bar{v}^{\beta}}.
$$

Now by hypothesis, $g(\bar{N}, \xi) \neq 0$ at \bar{p} and we may then restrict \bar{V} so that $g(\bar{N}, \xi) \neq 0$ on \bar{V} . Again, by hypothesis, $g(H, \bar{N}) \sim g(\bar{H}, \bar{N})$ so it follows from (11) that on \bar{V}

$$
\bar h^{\alpha\beta}\frac{\partial^2 F}{\partial \bar v^\alpha\partial \bar v^\beta}\sim 0.
$$

Hence, by Hopf's maximum principle [7], F is locally constant at \bar{p} . This implies f is locally constant at each point $p \in W$ at which $f(p) = c$. Since W is assumed to be connected, it follows from the continuity of f that $f = c$ on W. Thus $\bar{W} = \phi_c(W)$ which shows that \bar{W} is a submanifold of M and W, \bar{W} are congruent modulo ϕ as required.

We note from the above proof that the vector field $\bar{N} - N$ on \bar{V} is smooth and takes the value $\bar{N}_{\bar{p}}$ at \bar{p} . Thus by restricting \bar{V} we may assume that $\bar{N} - N$ is nowhere zero on \bar{V} and we then write $\tilde{N} = (\bar{N}-N)/||\bar{N}-N||$. Thus \tilde{N} is smooth on \bar{V} and, for each $\bar{q} \in \bar{V}$, \tilde{N} is a unit normal to $\bar{V}_{\bar{q}}$. Also $\tilde{N} = \bar{N}$ at \bar{p} . We now prove:

COROLLARY 2.2: Suppose (ii) of Theorem 2.1 is replaced by the condition that *on* \bar{V}

 $(ii)'$ $q(H, \tilde{N}) \sim q(\bar{H}, \bar{N}).$

Then, again, \bar{W} is a submanifold of M and W, \bar{W} are congruent modulo ϕ .

Proof: As already shown, the components N^i of the vector field N on \bar{V} satisfy $N^i \sim 0$. Hence

$$
\|\bar{N} - N\|^2 = g_{ij}(\bar{N}^i - N^i)(\bar{N}^j - N^j)
$$

$$
\sim 1.
$$

Then

$$
\|\bar{N} - N\| = \frac{\|\bar{N} - N\|^2 - 1}{\|\bar{N} - N\| + 1} + 1
$$

 ~ 1

and from (ii)'

$$
g(H, \ \bar{N}) \sim g(H, \ \bar{N} - N)
$$

=
$$
\|\bar{N} - N\|g(\bar{H}, \ \bar{N})
$$

$$
\sim g(\bar{H}, \ \bar{N}).
$$

The corollary then follows from Theorem 2.1. Also, Theorem 1.4 is now a special case of Corollary 2.2 where W has codimension one in M.

3. Extension of Brfihlmann's theorem

We recall from [3] that Brühlmann's proof of Theorem 1.5 depends on a generalisation of Hopf's maximum principle which we now state in a modified form suitable for later use.

LEMMA 3.1: Let P, $p^{\alpha\beta}$ and q^{α} , for $\alpha, \beta = 1, \ldots, r$, be smooth real-valued *functions on an open ball* $D\{u^{\alpha}\}\subset \mathbb{R}^r$ where the quadratic form $p^{\alpha\beta}\lambda_{\alpha}\lambda_{\beta}$ is positive definite, and let Q satisfy the differential equation

$$
P p^{\alpha\beta} \frac{\partial^2 Q}{\partial u^\alpha \partial u^\beta} + q^\alpha \frac{\partial Q}{\partial u^\alpha} = 0
$$

on D. Suppose there exists $u_0 \in D$ *such that* $Q(u) \leq Q(u_0)$ *everywhere on D* and suppose either $P(u_0) \neq 0$ or $q^{\alpha} \partial P / \partial u^{\alpha} > 0$ at u_0 . Then Q is constant on *some neighbourhood of uo.*

We now generalise Brühlmann's theorem by modifying the conditions for Theorem 2.1. In particular, we use a new equivalence relation on $C^{\infty}(\tilde{V})$ by writing $F_1 \sim F_2$ if $F_1 - F_2 = X(F)$ for some smooth vector field X on \bar{V} such that $X = 0$ at \bar{p} . Then with the notation of §2 we prove

THEOREM 3.2: *Suppose f attains* on W a maximum *value,* say c. For each maximum point p of f choose coordinate neighbourhoods V of p and \bar{V} of \bar{p} as above and suppose there exists a smooth unit normal vector field \bar{N} on \bar{V} such *that*

(i) $q(H, \bar{N}) \sim q(\bar{H}, \bar{N})$ and

(ii) *if* $g(bN, \xi) = 0$ at \bar{p} then $\bar{h}^{\alpha\beta}g(\bar{N}, \nabla_{\epsilon_{\alpha}}\eta)e_{\beta}(g(\bar{N}, \eta)) > 0$ at \bar{p} , where η is the normal component of ξ along \overline{V} .

Then \bar{W} is a submanifold of M and W, \bar{W} are congruent modulo ϕ .

Proof. The case where $g(\bar{N}, \xi) \neq 0$ at \bar{p} has already been considered, so we may assume $g(\bar{N}, \xi) = 0$ at \bar{p} . Then, as a consequence of (8) and (9), $a^{\alpha} \sim 0$ and $N^i \sim 0$. Also, it follows from (6) that

$$
h^{\gamma\delta}-\bar{h}^{\gamma\delta}\sim \left[g(e_{\alpha},\ \xi)\frac{\partial F}{\partial \bar{v}^{\beta}}+g(e_{\beta},\ \xi)\frac{\partial F}{\partial \bar{v}^{\alpha}}\right]\bar{h}^{\alpha\gamma}\bar{h}^{\beta\delta}.
$$

Then from (10) and the above equivalences

$$
g(H, \bar{N}) \sim g_{ij} N^{i} \left[\bar{h}^{\alpha\beta} + \bar{h}^{\alpha\gamma} \bar{h}^{\beta\delta} \left[g(e_{\gamma}, \xi) \frac{\partial F}{\partial \bar{v}^{\delta}} + g(e_{\delta}, \xi) \frac{\partial F}{\partial \bar{v}^{\gamma}} \right] \right]
$$

\n
$$
\times \left[\frac{\partial^{2} x^{j}}{\partial \bar{v}^{\alpha} \partial \bar{v}^{\beta}} + \Gamma^{j}_{k\ell} \frac{\partial x^{k}}{\partial \bar{v}^{\alpha}} \frac{\partial x^{\ell}}{\partial \bar{v}^{\beta}}
$$

\n
$$
-2 \frac{\partial \xi^{j}}{\partial x^{k}} \frac{\partial x^{k}}{\partial \bar{v}^{\alpha}} \frac{\partial F}{\partial \bar{v}^{\beta}} - 2 \Gamma^{j}_{k\ell} \xi^{k} \frac{\partial x^{\ell}}{\partial \bar{v}^{\beta}} \frac{\partial F}{\partial \bar{v}^{\alpha}} - \xi^{j} \frac{\partial^{2} F}{\partial \bar{v}^{\alpha} \partial \bar{v}^{\beta}} \right]
$$

\n
$$
\sim g(\bar{H}, \bar{N}) - 2g(\bar{N}, \nabla_{e_{\alpha}} \xi) h^{\alpha\beta} \frac{\partial F}{\partial \bar{v}^{\beta}} - g(\bar{N}, \xi) \bar{h}^{\alpha\beta} \frac{\partial^{2} F}{\partial \bar{v}^{\alpha} \partial \bar{v}^{\beta}}
$$

\n
$$
+ 2 \bar{h}^{\alpha\gamma} \bar{h}^{\beta\delta} g(e_{\gamma}, \xi) \frac{\partial F}{\partial \bar{v}^{\delta}} g(\bar{N}, \nabla_{e_{\beta}} e_{\alpha})
$$

\n
$$
= g(\bar{H}, \bar{N}) - 2g(\bar{N}, \nabla_{e_{\alpha}} \xi) h^{\alpha\beta} \frac{\partial F}{\partial \bar{v}^{\beta}} - g(\bar{N}, \xi) \bar{h}^{\alpha\beta} \frac{\partial^{2} F}{\partial \bar{v}^{\alpha} \partial \bar{v}^{\beta}}
$$

\n
$$
- 2g(\nabla_{e_{\alpha}} \bar{N}, \xi - \eta) \bar{h}^{\alpha\beta} \frac{\partial F}{\partial \bar{v}^
$$

where η denotes the normal component of ξ along \overline{V} . Hence, from (i) of the theorem,

$$
g(N, \ \xi)\bar{h}^{\alpha\beta}\frac{\partial^2 F}{\partial \bar{v}^\alpha \partial \bar{v}^\beta} + 2g(\bar{N}, \ \nabla_{\epsilon_\alpha}\eta)\bar{h}^{\alpha\beta}\frac{\partial F}{\partial \bar{v}^\beta} \sim 0.
$$

Thus, on \bar{V} the function F satisfies a differential equation of the form

$$
g(N,\ \xi)\bar h^{\alpha\beta}\frac{{\partial}^2 F}{{\partial} \bar v^\alpha{\partial} \bar v^\beta}+H^\beta\frac{{\partial} F}{{\partial} \bar v^\beta}=0
$$

and at \bar{p}

$$
H^{\alpha}e_{\alpha}(g(N, \xi)) = 2\bar{h}^{\alpha\beta}g(\bar{N}, \nabla_{e_{\alpha}}\eta)e_{\beta}(g(\bar{N}, \eta)).
$$

Consequently, from Lemma 3.1 and the hypothesis of the theorem, F is locally constant at \bar{p} . Then, as before, $f = c$ on W and $\bar{W} = \psi_c(W)$, as required.

We note that if W has codimension one in M then $\nabla_{e_\alpha} \tilde{N}$ is tangential to \tilde{V} so (ii) of Theorem 3.2 can be replaced by the simpler condition that $e_{\alpha}(g(\bar{N}, \xi)) \neq 0$. Also, since $N^i \sim 0$, then, as in the proof of Corollary 2.2, we have $g(H, N) \sim$ $g(H, \bar{N})$. Hence Theorem 1.5 follows as a special case.

304 **A.J. LEDGER** Isr. J. Math.

References

- [1] A. Aeppli, *Einige Ahnlichkeits- und Symmetriesätze für differenzierbare Flächen* im Raum, Comment. Math. Helv. 33 (1959), 174-195.
- [2] H. Brühlmann, *Einige Kongruenzätze für geschlossene k-dimensionale Flaechen in n-dimensiona]en Riemannschen Raeuman,* Comment. Math. Helv. 44 (1969), 164-190.
- [3] H. Brühlmann, *A congruence theorem for closed hypersurfaces in Riemannian* spaces, J. Differ. Geom. 8 (1973), 487-510.
- [4] P. Hartman, *Remarks on a uniqueness theorem* for *closed* surfaces, Math. Ann. **1an (1957), 426-430.**
- [5] P. Hartman and R. Sscksteder, *On maximum principles* for *non-hyperbolic partial differentia] operators,* Rend. Circ. Mat. Palermo (2) 6 (1957), 218-233.
- [6] E. Hopf, *Elementaxe* Bemerkungen fiber *die* L6sungen *partieller Differentialgleichungen zweiter Ordnung* vom *elliptlschen Typus,* S. -B. Preuss. Akad. Wiss Berlin 19 (1927), 147-152.
- [7] E. Hopf, A remark on linear *elliptic differentia] equations* of second order, Proc. Amer. Math. Soc. 3 (1952), 791-793.
- [8] H. Hopf and Y. Katsurada, Some *congruence* theorems for *closed hypersurfaces in* Riemann spaces. *II,* Comment. Math. Helv. 43 (1968), 217-223.
- [9] H. Hopf and K. Voss, *Ein Satz aus der Flächentheorie im Grossen*, Arch. Math. **3** (1952), 187-192.
- [I0] Y. Katsursda, *Some congruence theorems* for dosed *hypersurfaces in RJemann spaces. I,* Comment. Math. Helv. 43 (1968), 176-194.
- [11] A.J. Ledger and M. Okumura, *A congruence* theorem for *hypersurfaces of Riemannian manifolds,* Arch. Math. 55 (1990), 306-312.
- [12] K. Voss, *Einige differentialgeometrische Kongruenzätze füer geschlossene Flächen* und *Hyperflächen*, Math. Ann. 131 (1956), 180-218.