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ABSTRACT
The aim of this paper is, essentially, to give sufficient conditions in terms
of mean curvature for two submanifolds of a given Riemannian manifold to
be congruent modulo a given 1-parameter group of transformations. The
results obtained generalise those of several authors including M. Okumura
and the present author [11].

1. Introduction

We first recall some results which relate to the following general problem. Let
(M, g) be a smooth Riemannian manifold of dimension r+1,let ¢ : RxM — M
be a 1-parameter group of transformations of M generated by a vector field £, and
let W, W be smooth, compact, oriented r-dimensional connected hypersurfaces in
M such that the points of W are given by the formula ¢(f(q), ¢), ¢ € W, where
f: W — R is a given smooth function. For each ¢ € W define a hypersurface
W, by the condition that the map ¢z : W — Wy; = — ¢(f(g), z) should be
a diffeomorphism. Also for each ¢ € W write § = ¢(f(g), ¢) and define

H(7) = mean curvature of W at g,

H(§) = mean curvature of W, at ¢,
where the above maps are assumed to preserve orientation. Then one may ask:
Under what further conditions does the equality H(§) = H() forall g € W

imply that W and W are congruent modulo @, that is W = ¢(W) for some
ceR?
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Two cases of particular interest arise as follows: Suppose W and W are surfaces
in Euclidean space E® and 6 : W — W is a smooth map preserving orientation.
Also, suppose the set of points p € W where the lines [p, p], 5 = 6(p), are tangent
to W does not have inner points. Then the following two theorems apply.

THEOREM 1.1: (H. Hopf and K. Voss (9], K. Voss [12], P. Hartman [4]) If all the
lines [p, p) are parallel and 8 preserves the mean curvature of W and W (that is
H(p) = H(p)), then W is obtained from W by a translation of E3.

THEOREM 1.2: (A. Aeppli ([1]) If all the lines [p, p| pass through a fixed point
0 and if rH(p) = FH(p), where r and 7 are the distances from 0 to p and p
respectively, and H(p) is the mean curvature of W at p, then W is obtained from
W by a homothety, thus the ratio ¥/r is constant.

In the above two theorems ¢ is a 1-parameter group of translations or homo-
theties.

Next, with the notation of the first paragraph, let S be the set of singular
points of W, that is the set of points on which the vector field ¢ is tangential to
W. Then the following three theorems are known:

THEOREM 1.3: (Y. Katsurada [10]) If H(g) = H() forall¢ € W, and ¢ is a
1-parameter group of homothetic transformations for which S is nowhere dense
in W, then W and W are congruent modulo 4.

THEOREM 1.4: (H. Hopf and Y. Katsurada [8)) If H(g) = H(J) for all ¢ € W
and the set S is empty, then W and W are congruent modulo ¢.

The method of proof of Theorem 1.4 is to show that f satisfies an elliptic
partial differential equation on W and then to apply the well-known maximum
principle of E. Hopf [7]. By modifying the maximum principle, using a special
case of a theorem due to P. Hartman and R. Sacksteder [5], H. Brithlmann has

generalised Theorem 1.4 as follows:

THEOREM 1.5: (H. Brithlmann [3]) Define G : W — R by G = ¢(N, £) where N
is the unit normal vector field over W. If grad G # 0 whenever G = 0 on W,
and H(p) = H(P) for all p € W, then the hypersurfaces W and W are congruent
modulo ¢.

Our main purpose here is to generalise Theorem 1.4 in the following ways.

Firstly, we remove the conditions of orientability, then we replace the compact-
ness conditions on W and W by the condition that f should attain a maximum
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value on W; next, we allow W to have arbitrary codimension and remove the
assumption that W is a submanifold of M; finally we replace the global condi-
tion that # = H by a local condition on mean curvature vector fields. Indeed,
our proof is essentially a local one and does not require the method of varia-
tion of mean curvature found in [8]. We then obtain a similar generalisation of

Brithlmann’s theorem by considering the above conditions in greater detail.

2. Extension of the Hopf-Katsurada theorem

The following notation and assumptions will apply from hereon. Let (M, ¢) be
a smooth Riemannian manifold of dimension r + n,let ¢ : Rx M — M be a
1-parameter group of transformations of M generated by a vector field ¢, and
let W be a smooth connected r-dimensional submanifold of M. For each ¢t € R
define the map ¢;: : W — M by é:(z) = ¢(t, z). We consider a given smooth
function f : W — R and write W = ¢(W) where the map 1 : W — M is defined
by
¥(a) = 8(f(a), q) forall g€ W.

As before we write ¥(q) as §. However, we remark that W is not assumed to
have a submanifold structure. Now assume f attains a maximum value, say c,
on W. If f(p) = c then df =0 at p so dyp = d¢. at p where dyp and d¢. denote
the differentials of 1 and ¢, acting on T,(W), the tangent space to W at p. It
follows that 9 is an immersion of some neighbourhood of p in W into M. Hence
there exists a neighbourhood V of p in W and an embedded submanifold V of
M such that V = ¥(V) and the map V — V; z — ¥(z) is a diffcomorphism.
Similarly, for each ¢ € V define a submanifold V; of M such that V5 = ¢4,(V)
and the map V — V; z — éyy(z) = 8(f(g), z) is a diffeomorphism. We note
that § € V; for each § € V, also the tangent spaces Ty(V) and Tj(V;) agree.
Then we define vector fields H and H along V by writing H(7) and H(g) for
the mean curvature vectors of V and V; at § for each 7 € V. Also, we define
a smooth function F : V — R by f|[V = F o4. Finally, define an equivalence
relation ~ on C®(V) by writing Fi ~ F, if F; — F; = X(F) for some smooth
vector field X tangential to V. We now prove the following theorem.

THEOREM 2.1: With the above notation, suppose f attains on W a maximum
value, say c¢. For each maximum point p of f choose V and V as above and
suppose there exists a smooth unit normal vector field N on V such that
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(i) o(H, N) ~ g(H, N)
and
(ii) g(N, €) # 0 at p.
Then W is a submanifold of M and W, W are congruent modulo ¢.

Proof: We use the above notation relating to a maximum p of f. In particular
we choose V and V = (V) as above and remark that any further restrictions of
V or V are understood to be applied simultaneously so as to preserve the relation
(V) = V. Now restrict V so as to obtain a chart* V{v*} at p on W, then a
chart V {52} is defined by the relation v* = 5% 0 ¢. By restricting V we may
assume a chart U{z'} is defined at 5 on M such that V C U. We write g;; and
g" for the covariant and contravariant components of the metric tensor field g
on U{z'} and hag and h*# for the covariant and contravariant components of
the induced metric tensor field h on V{%}. Next, we note that since f and ¢
are continuous, V' can be restricted so that ¢4(4)(V) C U for all ¢ € V. Then for
each § € V a chart V;{v2} is defined on the submanifold V by the relation

) v = v7 0 §(g)-
In order to consider the vector fields H and H described above, we first use

the relation v* = v™% 0 9 to obtain

oz’ 3(:1: o)
8o °Y = Bv
_ 3 ow) , Aeon) OF
dve ot e
and . .
ozt _ Pzt o)
350058 ¥ " ovedvP

_(z'og) 0(z'og) 8f  (ziog) Of
= veduP | 0vedt G | 0uPGt Gv*
L P08 0f Of  Balod) If
T B2 Bva 9P 8t Gvedvf’
the right hand sides being evaluated where t = f(q) for each ¢ € V. For the
corresponding equations on V we use the function F' and the vector field £, as

defined above, to obtain

o' O(ziod) _,  ,;OF
® e~ ow oY Tioe
* Greek suffixes indicate the range 1,...,7 and Roman suffixes indicate the range

1,...,7 4+ n. A repeated suffix indicates summation.
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and

a’zt 3*(zf04) -1y O [3z) OF | 9z’ OF
555058 ~ Bvadep °V Yo [60" 557 T o8 8v°‘]
o¢! & ¢ 28 . OF OF f' oF
827" 5o° 598 T Boo00P
at all points of V, where £ = £'9/0z* on U.

We note from (1) that if each z* is restricted to V; then

®3)

8(@) = %5207 ()

"’Za; @ = 2 (y-1()).

Now for each § € V the natural components hqg(g) of the induced metric on

(4)

V; at § are given by ‘
s oz’

hap Gij av Py ﬂ
Hence, from (2) and (4), the functions h,g on V are given by
oz Oz oF
i j
hap = 9ij [ ¢ Bv"} [30" ¢ 6vﬂ]

OF OF
= has +9(6, O3z 775 — 9(ea E)a —5 — 9(es é)a-

()

where, from hereon, we write e, for the vector field (0z'/85%)8/0z’ defined on
V. Then from (5).

¥ — b7 = (hap — hag)h*7RP®

6 oF pes OF
© = |96, §) 7725 — 9(ear )85 — g(es, 5)6;] W B

where (h?%) denotes the inverse of the matrix (hs). It follows that, under the

above definition of equivalence,
(N R ~ hoP

for all a, 8.

We now use the vector field N, as given in the theorem, and the mean curvature
vector field H to obtain
0%z’ Oz* 9zt

g(ﬁ, N) = gij’_‘aﬂNi 5298 Pklava o5h
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where 3 5 As 8
i {/ j Y = 28 ¢
N=N'— 3ot onV and Ty, 327 = 5k Dl

Next we consider g(H, N) and first define a vector field N on V by the
condition that, for each § € V, Nj is on the component of Ng tangential to
V. Clearly, from (2) and (4)

on U.

(8) N=N‘i=a°[?—fi—5‘-a£ ~a—.=a°[e,,—g

oF
Ozl ove ove | Ozt

e

for some functions a® on V such that

- oF oF
g[N—aa [ea"gﬁ;] ) eﬂ"f%’i] =0,

thus
@ OF OF oF
a® [ ap — 9(€a; 5)6_5 9(es, E)a_ +9(6 g2 avﬁ] —g(N, =y

Since OF/0%® = 0 at p and (hqp) is non-singular, it follows from (9) that V can
be restricted so that a* ~ 0 on V. Hence N ~ 0 on V. Also, from (2), (3) and
(4), at each € V,

(10)
g(Ha N)':g(H’ N_N)

_, | 8%z . Oz Ozt
— g hOB(NY Ny ) Ml

Vg
-. P 06 00t OF 4080 OF OF
= g h (W = N¥) [ =22 -

= gijh* (N - N') [617"81713 26;,;* ove avﬂ +¢ dz* Bv* vP

. 9*F i [0z oz
ey _ - - k £
¢ Ggages tThe [Bv" ¢ Bv"] [avﬁ ¢ avﬂ”

Since N* ~ 0 and h*f ~ h°8 it follows that

[ i _p¢iact OF 8¢ OF OF
~ RSN L g Y YR YR k2 Y- -
9(H, N) ~ g;;h*"N [aﬁaaﬁﬂ 2% 595 058 T ¢ BaF 905 50P
4
(11) _ ¢ OPF 0z 4 OF ||0a® ,OF
¢ 5ag55 + The| 55s ~ 552 | | 57 ~ €5

&*F
8veapf’

~g(H, N)—g(N, &) h*



Vol. 83, 1993 RIEMANNIAN SUBMANIFOLDS 301

Now by hypothesis, g(V, ) # 0 at p and we may then restrict V so that
g(N, €) # 0 on V. Again, by hypothesis, g(H, N) ~ g(H, N) so it follows from
(11) that on V

78 o*F N

Vi ohli
Hence, by Hopf’s maximum principle [7], F is locally constant at p. This implies
f is locally constant at each point p € W at which f(p) = ¢. Since W is
assumed to be connected, it follows from the continuity of f that f = con W.

Thus W = ¢.(W) which shows that W is a submanifold of M and W, W are
congruent modulo ¢ as required. |

0.

We note from the above proof that the vector field N — N on V is smooth and
takes the value Nj at p. Thus by restricting V we may assume that N — N is
nowhere zero on V and we then write N = (N — N)/||N — N||. Thus N is smooth
on V and, for each § € V, N is a unit normal to V;. Also N =N at . We now

prove:

COROLLARY 2.2: Suppose (ii) of Theorem 2.1 is replaced by the condition that
onV

Gi) o(H, W)~ g(&, N).
Then, again, W is a submanifold of M and W, W are congruent modulo ¢.
Proof: As already shown, the components N* of the vector field N on V satisfy

N ~ 0. Hence - . o .
IV — NI = g (7 — N¥Y(N - )

~1.
e vy W= NI =1
I¥ - Nl = =Rt 1
~1
and from (ii)’ ) )
9(H, N)~g(H, N - N)
=||N -~ Nl|lg(H, N)
~ g(H, N).

The corollary then follows from Theorem 2.1. Also, Theorem 1.4 is now a special
case of Corollary 2.2 where W has codimension one in M.
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3. Extension of Briihlmann’s theorem

We recall from [3] that Brithlmann'’s proof of Theorem 1.5 depends on a gener-
alisation of Hopf’s maximum principle which we now state in a modified form

suitable for later use.

LEMMA 3.1: Let P, p*? and ¢%, for o, = 1,...,r, be smooth real-valued
functions on an open ball D{u®} C R" where the quadratic form p®#),)g is
positive definite, and let Q satisfy the differential equation

o0

8%Q
af
Pp Oueduf

on D. Suppose there exists ug € D such that Q(u) < Q(uo) everywhere on D
and suppose either P(uq) # 0 or ¢*0P/0u® > 0 at ug. Then Q is constant on
some neighbourhood of u,.

We now generalise Brithlmann'’s theorem by modifying the conditions for The-
orem 2.1. In particular, we use a new equivalence relation on C*(V) by writing
Fy, ~ F, if F} — F, = X(F) for some smooth vector field X on V such that X =0
at p. Then with the notation of §2 we prove

THEOREM 3.2: Suppose f attains on W a maximum value, say c. For each
maximum point p of f choose coordinate neighbourhoods V of p and V of p as
above and suppose there exists a smooth unit normal vector field N on V such
that

(i) g(#, N)~g(H, N) and

(ii) if g(bN, £) = 0 at  then h*Pg(N, V.,n)es(g9(N, n)) > 0 at p, where n is
the normal component of ¢ along V.
Then W is a submanifold of M and W, W are congruent modulo ¢.

Proof: The case where g(N, £) # 0 at  has already been considered, so we

may assume g(N, &) =0 at p. Then, as a consequence of (8) and (9), a* ~ 0
and N* ~ 0. Also, it follows from (6) that

- oF OF ] -+
5 _ 76, a7 p8
R — BY [g(ea, E)at')ﬁ + g(es, 6)85" h&TRP®,
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Then from (10) and the above equivalences

g(H, N) ~ gi;N* [h°ﬂ+ha7hﬂ6 [g(e,, €505 +9(e s,f) ”

o[22 | gy 02t 22t
8v29vf ' ¥ Jpe 9ph

i ok
08 0FOF 0t ‘OF _; O°F
Oz* dve OvP 0P ov* 8v° vk
3 OF
~ aﬂ af
9B, N) = 29(F, Ve, OBz — g, O o

+2ha7hﬂ69(e‘v, f)'aﬁg(N VCpCC')
h"’p aF

—5 — (N, O it

=g(H, N)-2¢(N, V., £ 88

JF
P

= o, F) = 29(N, Ve, b o — g(, 5 5

—29(V., N, 6 —p)h*f—

0*F
8v* 08

where  denotes the normal component of ¢ along V. Hence, from (i) of the

theorem,

oy, it Tl oo, v i 2 o

_a a ﬂ
Thus, on V the function F satisfies a differential equation of the form

ag O'F s OF
9N, O o + B o5 =0

and at p
H%es(g(N, £)) = 2h°Pg(N, V..n)es(g(N, n))-

Consequently, from Lemma 3.1 and the hypothesis of the theorem, F is locally
constant at . Then, as before, f = con W and W = ¢.(W), as required. 1

We note that if W has codimension one in M then V., N is tangential to V so
(ii) of Theorem 3.2 can be replaced by the simpler condition that e, (g(V, ¢)) # 0.
Also, since N* ~ 0, then, as in the proof of Corollary 2.2, we have g(H, N ) ~
g(H, N). Hence Theorem 1.5 follows as a special case.
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