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ABSTRACT 

The aim of this paper is, essentially, to give sufficient conditions in terms 

of mean curvature for two submanifolds of a given Riemannian manifold to 

be congruent modulo a given 1-parameter group of transformations. The 

results obtained generalise those of several authors including M. Okumura 

and the present author [11]. 

1. In t roduc t ion  

We first recall some results which relate to the following general problem. Let 

(M, g) be a smooth Riemannian manifold of dimension r ÷  1, let ¢ : R x M ~ M 

be a 1-parameter group of transformations of M generated by a vector field ~, and 

let W, I~ be smooth, compact, oriented r-dimensional connected hypersurfaces in 

M such that the points of I~ are given by the formula ¢(f(q), q), q • W, where 

f : W ~ R is a given smooth function. For each q • W define a hypersurface 

Wq by the condition that the map el(q) : W ~ Wq; z ~ ¢(f(q), z) should be 

a diffeomorphism. Also for each q • W write ~ = ¢(f(q), q) and define 

/t(~) = mean curvature of l~ at ~, 

H(~) = mean curvature of Wq at ¢, 

where the above maps are assumed to preserve orientation. Then one may ask: 

Under what further conditions does the equality/~(q) -- H(~) for all q • W 

imply that W and W are congruent modulo ¢, that is I~d = ¢¢(W) for some 

c E R ?  
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Two cases of particular interest arise as follows: Suppose W and l~ r are surfaces 

in Euclidean space E s and 0 : W --* I~ is a smooth map preserving orientation. 

Also, suppose the set of points p E W where the lines [p, ~], i~ = 0(p), are tangent 

to W does not have inner points. Then the following two theorems apply. 

THEOREM 1.1: (H. Hopf and K. Voss [9], K. Voss [12], P. Hartman [4])/.fall the 

lines ~, ~] are paral/el and 0 preserves the mean curvature o[ HI and ~V (that is 

H(p) = ~'I(~)), then l~ r is obtained from W by a translation o[ E 3. 

THEOREM 1.2: (A. Aeppli ([1])//all  the lines ~, ~] pass through a fixed point 

0 a n d / f  r~r(p) _- ~H(/3), where r and ~ are the distances from 0 to p and 

respectively, and I-I(p) is the mean curvature of W at p, then 17V is obtained from 

W by a homothety, thus the ratio ~/r is constant. 

In the above two theorems ~ is a 1-parameter group of translations or homo- 

theties. 

Next, with the notation of the first paragraph, let S be the set of singular 

points of l~, that is the set of points on which the vector field ~ is tangential to 

l~. Then the following three theorems are known: 

THEOREM 1.3: (Y. Katsurada [10])//~r(q) = H(q) for all q E W, and q~ is a 

1-parameter group of homothetic transformations for which S is nowhere dense 

in IV, then W and W are congruent modulo ~. 

THEOREM 1.4: (H. Hopf and V. Katsurada [8]) I f / t (~)  = H(~) for all q E W 

and the set S is empty, then W and 17V are congruent modulo ~. 

The method of proof of Theorem 1.4 is to show that f satisfies an elliptic 

partial differential equation on W and then to apply the well-known maximum 

principle of E. Hopf [7]. By modifying the maximum principle, using a special 

case of a theorem due to P. Hartman and R. Sacksteder [5], H. Brfihlmann has 

generalised Theorem 1.4 as follows: 

THEOREM 1.5: (H. Briihlmann [31) Define G : l~ --, R by G = 9(N,~) where 

is the unit normal vector field over I~. / /grad G ~ 0 whenever G = 0 on 17V, 

and H(~) -- H(p) for all p E W, then the hypersurfaces W and IYV are congruent 

modulo ~. 

Our main purpose here is to generalise Theorem 1.4 in the following ways. 

Firstly, we remove the conditions of orientability, then we replace the compact- 

ness conditions on W and W by the condition that f should attain a maximum 
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value on W; next, we allow W to have arbitrary codimension and remove the 

assumption that  l~ r is a submanifold of M; finally we replace the global condi- 

tion that  H = H by a local condition on mean curvature vector fields. Indeed, 

our proof is essentially a local one and does not require the method of varia- 

tion of mean curvature found in [8]. We then obtain a similar generalisation of 

Br~hlmarm's theorem by considering the above conditions in greater detail. 

2. E x t e n s i o n  o f  t he  H o p f - K a t s u r a d a  t h e o r e m  

The following notation and assumptions will apply from hereon. Let (M, g) be 

a smooth Riemannian manifold of dimension r + n, let ¢ : R × M --* M be a 

1-parameter group of transformations of M generated by a vector field ~, and 

let W be a smooth connected r-dimensional submauifold of M. For each t E R 

define the map ¢ , :  W -~ M by ¢,(~) = ¢(t, x). We consider a ~ven  smooth 

function f : W --* R and write W = ¢ (W)  where the map ¢ : W ~ M is defined 

by 
¢(q) = ~(f(q), q) for all q G W. 

As before we write ¢(q) as ~. However, we remark that l?~ is not assumed to 

have a submanifold structure. Now assume f attains a maximum value, say c, 

on W. If f(p) = c then df = 0 at p so de  = d~c at p where de  and dec denote 

the differentials of ¢ and ¢c acting on Tp(W), the tangent space to W at p. It 

follows that ¢ is an immersion of some neighbourhood of p in W into M. Hence 

there exists a neighbourhood V of p in W and an embedded submanifold V of 

M such that ~" = ~(V)  and the map V --, (r; x ~-~ 9 (x)  is a diffeomorpkism. 

Similarly, for each q E V define a submanifold V 4 of M such that Vq = ~l(q)(V) 

and the map V --* Vq; x ~ ~l(q)(z) = ¢(f(q) ,  z) is a diffeomorphism. We note 

that q e Vq for each ~ e (r, also the tangent spaces T~(V') and T~(Vp) agree. 

Then we define vector fields H and H along V by writing/~'(~) and H(~) for 

the mean curvature vectors of V and V¢ at ~ for each ~ E (r. Also, we define 

a smooth function F : ~" -~ R by f lV  = F o ¢. Finally, define an equivalence 

relation ,-, on C ~ ( V )  by writing F1 " F~ if F1 - F2 = X(F)  for some smooth 

vector field X tangential to (r. We now prove the following theorem. 

THEOREM 2.1: With the above notation, suppose f atta/ns on W a maximum 

value, say c. For each maximum point p o{ f choose V and V" as above and 

suppose there exists a smooth unit normal vector field fit on (," such that 
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( i )  g(H, N),,~ g(H, N) 
and 

(ii) g(N, ~) 4 0 at #. 

Then $~ is a submanifold of M and W, W are congruent modulo ¢. 

Proof: We use the above notation relating to a maximum p of f .  In particular 

we choose V and 17" : ¢(V) as above and remark that any further restrictions of 

V or lTr are understood to be applied simultaneously so as to preserve the relation 

¢(V) - ~'. Now restrict V so as to obtain a chart* V{v  ~} at p on W, then a 

chart V ( ~ }  is defined by the relation v ~ = ~ o ¢. By restricting V we may 

assume a chart U{z i} is defined at # on M such that ~" C U. We write gij and 

gij for the covariant and contravariant components of the metric tensor field g 

on U{z i} and h ~  and ~a# for the covariant and contravariant components of 

the induced metric tensor field h on ~{Oa}. Next, we note that  since f and ¢ 

are continuous, V can be restricted so that Cf(q)(V) C U for all q E V. Then for 

each 4 • ~" a chart Vq{v~} is defined on the submarfifold V~ by the relation 

( I )  v a = a v~ o el(q). 

In order to consider the vector fields/~ and H described above, we first use 

the relation v a = v - a  o ¢ to obtain 

Ox i 0(x ~ o ¢) 
O~ a o ¢ = Ov a 

O(x i o ¢) 
Ov a 

and 
02 X i 

O(x i o ¢) Of 

Ot Ov a 

0~(~ ~ o ¢) 
OvaOv# 

a2(x ~ o ¢) + a2(x ~ o ¢) o f  + a~(~ ~ o ~) o f  
Ov~Ov# OvaOt Ov# Ov#Ot Ov ~ 

O2(z i o ¢) Of Of O(X i o ¢) O2 f 

+ Or2 Ov ----~ Ov'--D + T OvaOv --------~' 
the right hand sides being evaluated where t = f (q)  for each q E V. For the 

corresponding equations on V we use the function F and the vector field ~, as 

defined above, to obtain 

Oz i O(z i o ¢) ~i OF 
(2) 0 ~ a -  ~ o ¢ - 1 +  0~a 

* Greek suffixes indicate the range 1 , . . . , r  and Roman suffixes indicate the range 
1 , . . . , r  + n. A repeated suffix indicates summation. 
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and 

o,,,' m(,,o#,) ¢_, a¢ [o,~ oF a,~ oF] 
o~¢,oop -- o , , , ,o , ,p  o + ~ LO~" a~J, + o%-~ (3) 

O~ i .j OF OF ~i 02F 

at all points of 17, where f = fiO/Oxi on U. 

We note from (1) that if each x i is restricted to V# then 

{0~  ~/-~ 0(~%~)/~-l~-~ 
~ t q )  = a~. t~ tqJ), 

(4) a ' ,  ~ ,='~ _ o2(~°÷)~.l,-tt~.~ 

Now for each ~ E l Tr the natural components h~#(q)  of the induced metric on 

V# at q are given by 
Ox i OxY 

h~ = gu av~ o,,~" 

Hence, from (2) and (4), the functions ho# on V are given by 

r0, , ¢0Fl[0   e0F1 
h~4 = gu  [ 0 ~  - 0 ~ ; j  [ O ~  - 0---~J (5) 

OF OF OF 
= L~+g(~, ~)~_F~o~ ~ g(e~, ~ ) ~ - g ( ~ ,  Oar, ° 

where, from hereon, we write e~ for the vector field (Oxi/O#c')o/Ox ~ defined on 

V. Then from (5). 

~ s  _ h.~e = ( h o #  - ~ , , # ) h ~ " ~ M  ~ 

- ) o--~; ~ - g(e~ ,  ~ ) ~  - g ( ~ ,  o o ,  

where (h "~) denotes the inverse of the matrix (hT~). It follows that, under the 

above definition of equivalence, 

(7) ~ ' ~  ... h"~' 

for all a, #. 

We now use the vector field N, as given in the theorem, and the mean curvature 

vector field/~r to obtain 

I ~x~ _~ Ox kOx tl 
g(/ / ,  N )  = go~O#R ~ + rkt ~.---z-_. ~_-:zl 

u1)-  uDl- j 
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where 
~ = ~ o  r~ o__ ~0 o 

Oz i on 17" and ~ 0z~ = Oz ~ Oz t on U. 

Next we consider g(H, ~r) and first define a vector field N on ~" by the 

condition that,  for each q q V, N~ is on the component of N~ tangential to 

V¢. Clearly, from (2) and (4) 

(8) o.lo , 
o ~  --- tooo - ~ - j  ~ ~'~ - ~ 

for some functions a ~ on V such that 

o--~J' ~ o ~ J  =o,  

thus 

(9) 
__  ~. OF ~. OF ~. OF OF l .~[~o~ g(~., ~-g(~ ,  ~+g(~, ) ~ ]  -g(R, ~ OF 

= )0~#" 

Since cgF/O~ '~ = 0 at/~ and (h~,#) is non-singtrlar, it follows from (9) that  17 can 

be restricted so that a ~ ~ 0 on V. Hence N i ~ 0 on V. Also, from (2), (3) and 

(4), at each q 6 I 7, 

(10) 
g(Z-I, ~) = g(H, ~ - N) 

= g,ih"~(~' - N') L ov~Ovf + rk, o,,~ Ovg I 

[ O~zi . a¢i oz k OF ~, a¢i OF OF 
= gua~(~ ' -  Nq to~o~ ~ - ~ ~  ~ +.  ~ ~ ~ 

- e  o:F +rL[0z._e0F1 fO '_¢OFll 
o~o~------~ ka~  o ~  l Lo~ oT#1j  

Since N i ,~ 0 and h a# ~ h"#, it follows that 

(II) 

g(H, N ) ~  gqTt~#N ~ a2zJ ~ a~J azk aF ~ a~ j OF aF 

_ ¢  o=F +r~t[ax k . ~ a F l [ a ,  t ~,oFI] 
- ¢  L 

, , ,  g(~, R) - 9(~, ~) h ~'p ~ F  
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Now by hypothesis, g(,~, ~) ~ 0 at ~ and we may then restrict 17 so that 

g(~r, ~) ~ 0 on 17. Again, by hypothesis, g(H, F¢) ~ g(H,  N) so it follows from 

(11) that on 17 

~ ~ F  ~ 0. 

Hence, by Hopf's maximum principle [7], F is locally constant at i~. This implies 

f is locally constant at each point p E W at which f (p )  = c. Since W is 

assumed to be connected, it follows from the continuity of f that f = c on W. 

Thus l~  = ~c(W) which shows that l~  is a submanifold of M and ~ 14z are 

congruent modulo ~ as required. | 

We note from the above proof that the vector field N - N on 17 is smooth and 

takes the value N~ at ~. Thus by restricting 17 we may assume that N - N is 

nowhere zero on 17 and we then write N = ( N - N ) / ] [ N - N I I .  Thus N is smooth 

on 17 and, for each ~ E 17, N is a unit normal to 17#. Also ~r = ~ at ~. We now 

prove: 

COROLLARY 2.2: Suppose Oi) of Theorem 2.1 is replaced by the condition that 

on17 

(~i)' g(~, N)~ g(X, N). 
Then, again, I~ r Js a submanifold of M and ~ I~ are congruent modulo ~. 

Proof.." As already shown, the components N i of the vector field N on 17 satisfy 

N i ~ O. Hence 

Then 

and from (ii)' 

,,~1. 

I1~ - NI l  2 - 1 
I IN  - Ni l  = I1-~ - Ni l  + 1 %  1 

~ 1  

g ( ~ ,  ~ )  ~ g(Z~, ~ - ~¢) 

= I1~ - N I I g ( ~ ,  ~ )  

~ g ( X ,  ~). 
The corollary then follows from Theorem 2.1. Also, Theorem 1.4 is now a special 

case of Corollary 2.2 where W has codimension one in M.  
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3. Extension of  Brfihlmann's theorem 

We recall from [3] that Brfihlmann's proof of Theorem 1.5 depends on a gener- 

alisation of Hopf's maximum principle which we now state in a modified form 

suitable for later use. 

LEMMA 3.1: Let P, pa# and qC,, for a , 3  = 1 , . . . , r ,  be smooth rea/-va/ued 

functions on an open ball D{u ~} C R r where the quadratic form/'#A~,A# is 

positive de'hire, and let Q satisfy the differentia/equation 

ppC,# 02Q a OQ 
Ou=Ou"~-~ + q ~u~ = 0 

on D. Suppose there exists uo E D such that Q(u) < Q(u0) everywhere on D 

and suppose either P(uo) # 0 or qaOP/Oua > 0 at uo. Then Q is constant on 

some neighbourhood of uo. 

We now generalise Brfihlmaun's theorem by modifying the conditions for The- 

orem 2.1. In particular, we use a new equivalence relation on Coo(V) by writing 

Fi ~ F2 if F1 - F2 = X(F)  for some smooth vector field X on Q such that X = 0 

at/5. Then with the notation of §2 we prove 

THEOREM 3.2: Suppose f attains on W a maximum value, say c. For each 

maximum point p of f choose coordinate neighbourhoods V of p and Q of ~ as 

above and suppose there exists a smooth tmJt normal vector ~eld N on Q such 

that 

(i) g(a, ~r) ~ g(a,  N) and 

(ii) ifg(bN, ~) = 0 at 0 then haPg(N, V,.r/)e~(g(.~', r/)) > 0 at 1~, where r/is 

the norton/component of ~ a/ong Q. 

Then lye" is a submanifold of M and IV, 17¢ are congruent modulo #. 

Proof.- The case where g(N, ~) ~ 0 at j~ has already been considered, so we 

may assume g(N, ~) = 0 a t / i  Then, as a consequence of (8) and (9), a ~ ~ 0 

and N i ,,, 0. Also, it follows from (6) that 

~ ~. aF1 
h~'S-h ' '  [g(e,,, ~)O~+,(e ,, )b-b-'gJY~'rT' ''. 
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Then from (10) and the above equivalences 

+ e~ OF 1 

[ O~zi - i  Oz~ Ozt 
x [0~ .0~  + r k t ~ O ~  

^O(i O~e ~ OF ~ kOzt OF (i 02F ] 
-zOxx~ O~ ~ 0~# 2r~t~ 0~# O~ - - '~  - 0~°'0~# 

g(H, N) 2g(N, Ve= " "a#  OF cg=F 
" "  - ~)~ O~# - g([~' ~)h'~O~'~O~ 

OF - + 2~=~g(~, ~)~-~g(N, V,,~) 
,~ OF O~F 

-~# OF O~F 
= g(H, g ) -  2g(N, V,= rl)h c3~# - g(N'~)Iza~cgSacgS~ 

303 

and at i6 

02F _ # OF 
g(g, ~)~,~'~ Oo--;-O0oB + ~ ~ = 0 

H=ec,(g(N, ~))=  2h=#g(.~ ", V~.r/)e#(g(/~', r/)). 

Consequently, from Lemma 3.1 and the hypothesis of the theorem, F is locally 

constant at/5. Then, as before, f = c on W and l~ = ~bc(W), as required. | 

We note that if W has eodimension one in M then Ve= N is tangential to V so 

(ii) of Theorem 3.2 can be replaced by the simpler condition that e=(g(N, ~)) ¢ 0. 

Also, since N i ,., O, then, as in the proof of Corollary 2.2, we have g(H, [[) ,~ 

g(H, [[). Hence Theorem 1.5 follows as a special case. 

where ~ denotes the normal component of ~ along ~'. Hence, from (i) of the 

theorem, 
~ F  ~ OF 

Thus, on ~7 the function F satisfies a differential equation of the form 
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